Abstract

Summary Solubility and diffusivity of gases in heavy oils, quantified by Henry's constant (Hij) and the diffusion coefficient (D), respectively, are essential properties for the design of recovery processes that require the injection of gas or vapor solvents into the reservoir. Data, obtained from various experimental procedures such as the pressure-decay technique (PDT), are used to estimate these two parameters. The PDT uses a pressure/volume/temperature (PVT) cell where the gas-phase pressure declines as gas diffuses into heavy oil following an early- and a late-time regime. Current approaches to analyze data from the conventional PDT are either graphical techniques based on early-time data or full numerical simulation. Early-time data, when the diffusing gas has not reached the bottom of the PVT cell, do not provide enough information to simultaneously estimate both the diffusion coefficient and Henry's constant. Hence, existing graphical procedures are limited to diffusion-coefficient estimation. In this paper, we propose a novel graphical technique to estimate the diffusion coefficient and Henry's constant by use of the late-time data from pressure-decay experiments. Our method is derived from the modeling of gas-phase pressure decay by use of Fick's second law and gas-phase mass-balance equations. We use the integral method to provide an approximate analytical solution to the set of equations. In addition, by use of the resultant solution, we develop a simple graphical method to directly estimate both the diffusion coefficient and Henry's constant. The estimated parameters through the proposed technique for methane/bitumen and carbon dioxide/bitumen experiments are in close agreement with those reported in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call