Abstract

It is well known that knowledge of thermophysical parameters is a leading strategy to research effects of energy transfer in soils. The present article proposes an inverse analysis for numerical solving of nonlinear heat transfer problem to determine the thermophysical properties of two different soil types: sand and chernozem. First, estimation of thermophysical parameters is performed using temperature data from experimental set-up, which is two-chambered container for two soil types. Second, numerical algorithm is based on implicit Euler scheme for discretization, Newton method to solve nonlinear system of equations and Levenberg-Marquardt method to minimize nonlinear estimator with Tikhonov's regularization technique. Simulations have been efficiently carried out for two different soil types, showing that the reliability of the model is satisfying with a discrepancy between numerical predictions and experimental observations remaining within the measurement error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.