Abstract
Soil moisture is an essential factor that influences agricultural productivity and hydrological processes. Soil moisture estimation using field detection methods takes time and is challenging. However, using Remote Sensing (RS) and Geographic Information System (GIS) technology, soil moisture parameters become easier to detect. In microwave remote sensing, synthetic aperture radar (SAR) data helps to retrieve soil moisture from more considerable depths because of its high penetration capability and the illumination power of its light source. This study aims to process the SAR Sentinel-1A data and estimate soil moisture using the Water Cloud Model (WCM). Many physical and empirical models have been developed to determine soil moisture from microwave remote sensing platforms. However, the Water Cloud Model gives more accurate results. In this study, the WCM model is used for mixed crop types. The experimental soil moisture was determined from in-situ soil samples collected from various agricultural areas. The soil backscattering values corresponding to the different soil sampling locations were derived from Sentinel SAR data. Using linear regression analysis, the laboratory's soil moisture results and soil backscattering values were correlated to arrive at a model. The model was validated using a secondary set of in-situ moisture content values taken during the same period. The R2 and RMSE of the model were observed to be 0.825 and 0.0274, respectively, proving a strong correlation between the experimental soil moisture and satellite-derived soil moisture for mixed crop field types. This paper explains the methodology for arriving at a model for soil moisture estimation. This model helps to recommend suitable crop types in large, complex areas based on predicted moisture content. Doi: 10.28991/CEJ-2023-09-06-08 Full Text: PDF
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.