Abstract

This study was aimed at predicting soil erosion risk in the Buyukcekmece Lake watershed located in the western part of Istanbul, Turkey, by using Revised Universal Soil Loss Equation (RUSLE) model in a GIS framework. The factors used in RUSLE were computed by using different data obtained or produced from meteorological station, soil surveys, topographic maps, and satellite images. The RUSLE factors were represented by raster layers in a GIS environment and then multiplied together to estimate the soil erosion rate in the study area using spatial analyst tool of ArcGIS 9.3. In the study, soil loss rate below 1 t/ha/year was defined as low erosion, while those >10 t/ha/year were defined as severe erosion. The values between low and severe erosion were further classified as slight, moderate, and high erosion areas. The study provided a reliable prediction of soil erosion rates and delineation of erosion-prone areas within the watershed. As the study revealed, soil erosion risk is low in more than half of the study area (54%) with soil loss <1 t/ha/year. Around one-fifth of the study area (19%) has slight erosion risk with values between 1 and 3 t/ha/year. Only 11% of the study area was found to be under high erosion risk with soil loss between 5 and 10 t/ha/year. The severe erosion risk is seen only in 5% of the study area with soil loss more than 10 t/ha/year. As the study revealed, nearly half of the Buyukcekmece Lake watershed requires implementation of effective soil conservation measures to reduce soil erosion risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.