Abstract
Soil air permeability is a key parameter in the design of soil vapour extraction. The purpose of this study is to verify the applicability of different analytical solutions, developed to determine soil characteristics in field conditions, to estimate soil air permeability in a small-scale pilot, since field testing may be expensive. A laboratory tridirectional pilot and a unidirectional column were designed in order to achieve the objectives of this work. Use of a steady-state unconfined analytical solution was found to be an appropriate method to determine soil air permeability components for the pilot conditions. Using pressure data collected under open, steady-state conditions, the average values of radial and vertical permeability were found to be, respectively, 9.97×10−7 and 8.74×10−7 cm2. The use of semi-confined analytical solutions may not be suitable to estimate soil parameters since a significant difference was observed between simulated and observed vacuums. Air permeability was underestimated when transient solutions were used, in comparison with methods based on steady-state solutions. The air radial and vertical permeability was found to be, respectively, 7.06×10−7 and 4.93×10−7 cm2, in the open scenario, and 2.30×10−7 and 1.51×10−7 cm2 in the semi-confined scenario. However, a good estimate of soil porosity was achieved using the two transient methods. The average values were predicted to be 0.482, in the open scenario, and 0.451 in the semi-confined scenario, which was in good agreement with the real value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.