Abstract

The use of controlled transdermal delivery of acyclovir (ACV) in the treatment of cutaneous herpes simplex virus type 1 infections in hairless mice was investigated. Using an in vivo animal model (A. Gonsho, et al. Int. J. Pharm. 65:183-194 (1990)) made it possible to quantify both, the topical and the systemic antiviral efficacy of ACV transdermal patches as a function of the drug delivery rate of the patches. Drug delivery rates required to attain systemic efficacy were found to be higher than the rates required to attain the same magnitude of topical efficacy. The ACV concentrations in the basal cell layer of the epidermis for 50% topical efficacy and 50% systemic efficacy were estimated. The basal epidermis layer was considered to be the site of antiviral drug activity (skin target site). Systemic plasma levels were obtained from pharmacokinetic studies and were used to estimate the ACV concentration achieved systemically in the basal epidermis layer. A computational model for drug permeation across skin was employed to estimate the ACV concentration achieved topically in the basal epidermis layer. Equal topical and systemic efficacies were found to correspond to equal drug concentrations at the site of antiviral activity. The length of the effective diffusion pathway of drug molecules in the dermis prior to entering the blood circulation was assumed to be approximately equal to 1/20 of the anatomical dermis thickness because of dermis vascularization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.