Abstract

Hyperspectral imaging combines high spectral and spatial resolution in one modality. This imaging technique is a promising tool for objective medical diagnostics. However, to be attractive in a clinical setting, the technique needs to be fast and accurate. Hyperspectral imaging can be used to analyze tissue properties using spectroscopic methods, and is thus useful as a general purpose diagnostic tool. We combine an analytic diffusion model for photon transport with real-time analysis of the hyperspectral images. This is achieved by parallelizing the inverse photon transport model on a graphics processing unit to yield optical parameters from diffuse reflectance spectra. The validity of this approach was verified by Monte Carlo simulations. Hyperspectral images of human skin in the wavelength range 400-1000 nm, with a spectral resolution of 3.6 nm and 1600 pixels across the field of view (Hyspex VNIR-1600), were used to develop the presented approach. The implemented algorithm was found to output optical properties at a speed of 3.5 ms per line of image data. The presented method is thus capable of meeting the defined real-time requirement, which was 30 ms per line of data.The algorithm is a proof of principle, which will be further developed.

Highlights

  • Hyperspectral imaging has been recently adopted for diagnostic imaging of human skin

  • This paper presents a deterministic hyperspectral inverse modeling approach based on diffusion theory and spectral unmixing

  • The final results, i.e., melanin and the blood parameters from different wavelength intervals, are delivered within 3.5 ms. This computation time is well within the real-time deadline limit imposed by the hyperspectral system, meeting the fast computing requirement, and leaving graphics processing units (GPUs) time for other future processing operations

Read more

Summary

Introduction

Hyperspectral imaging has been recently adopted for diagnostic imaging of human skin. The hyperspectral camera used in this study is a push broom, line-scanning device with a capture speed of 30 ms per line of data

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.