Abstract

Setback distances between septic tank systems and the shorelines of Lake Okareka, New Zealand were determined from model simulations for a worst-case scenario, using the highest hydraulic conductivity and gradient measured in the field, removal rates of the microbial indicators ( Escherichia coli and F-RNA phages) determined from a column experiment, and maximum values of the design criteria for the disposal system, and assuming an absence of an unsaturated zone, a continuous discharge of the raw effluent from a failed or non-complying treatment system (both indicators at concentrations of 1×10 7 counts/100 ml) into the groundwater and no sorption of pathogens in the aquifer. Modelling results suggest that the minimal setback distances were 16 m to satisfy the New Zealand Recreational Water Quality Guidelines for E. coli <126 per 100 ml (Ministry for the Environment, 1999) and 48 m to meet the Drinking-Water Standards for New Zealand 2000 for enteric virus <1 per 100 l (Ministry of Health, 2000). These distances may be applicable for other lakeshores in pumice sand aquifers with groundwater velocities <7 m/day. Findings of laboratory column and batch experiments provided an insight into the microbial attenuation and transport processes in pumice sand aquifers. Bacterial removal was predominately through filtration (87–88%) and partially by die-off (12–13%), while viral removal was by both die-off (45%) and filtration (55%). In addition, microbial die-off in groundwater without aquifer material (i.e., free microbes) was much lower than die-off in groundwater with aquifer material (i.e., sorbed microbes) and contributed only 2–6% to the total removal. This implies that the setback distances estimated from die-off rates for the free microbes, determined in the laboratory without considering aquifer media and other removal processes, which are often reported in the literature, could be larger than necessary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call