Abstract

We provide easy to verify sufficient conditions for the consistency and asymptotic normality of a class of semiparametric optimization estimators where the criterion function does not obey standard smoothness conditions and simultaneously depends on some nonparametric estimators that can themselves depend on the parameters to be estimated. Our results extend existing theories such as those of Pakes and Pollard (1989), Andrews (1994a), and Newey (1994). We also show that bootstrap provides asymptotically correct confidence regions for the finite dimensional parameters. We apply our results to two examples: a ‘hit rate’ and a partially linear median regression with some endogenous regressors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.