Abstract
ABSTRACTWe study a semivarying coefficient model where the regressors are generated by the multivariate unit root I(1) processes. The influence of the explanatory vectors on the response variable satisfies the semiparametric partially linear structure with the nonlinear component being functional coefficients. A semiparametric estimation methodology with the first-stage local polynomial smoothing is applied to estimate both the constant coefficients in the linear component and the functional coefficients in the nonlinear component. The asymptotic distribution theory for the proposed semiparametric estimators is established under some mild conditions, from which both the parametric and nonparametric estimators are shown to enjoy the well-known super-consistency property. Furthermore, a simulation study is conducted to investigate the finite sample performance of the developed methodology and results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.