Abstract
In the optimization of seaweed cultivation now being extensively researched, a problem arises in avoiding twisting seaweed. Twisting is a complex phenomenon and difficult to formulate. Producing the optimal water flow, requires calculating the risk of twisting occurring. In this paper, we propose a method to calculate and estimate the twist state based on the results of physical simulation. We devise a seaweed model using multiple rigid bodies that mutually and physically interfere. One result of physical interference, is that the model has two internal state variables – contact time and the number of contact points between individual pieces of seaweed. We introduce an evaluation function to quantify twisting using these state variables in each time step, and propose a way to calculate twist risk based on the von Neumann and Laplacian diffusion kernels, in a dynamic network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.