Abstract
Intersections are established dangerous entities of a highway system due to the challenging and unsafe roadway environment they are characterized for drivers and other road users. In efforts to improve safety, an enormous interest has been shown in developing statistical models for intersection crash prediction and explanation. The selection of an adequate form of the statistical model is of great importance for the accurate estimation of crash frequency and the correct identification of crash contributing factors. Using a six-year crash data, road infrastructure and geometric design data, and traffic flow data of urban intersections, we applied three different functional forms of negative binomial models (i.e., NB-1, NB-2, NB-P) and a generalized Poisson (GP) model to develop safety performance functions (SPF) by crash severity for signalized and unsignalized intersections. This paper presents the relationships found between the explanatory variables and the expected crash frequency. It reports the comparison of different models for total, injury & fatal, and property damage only crashes in order to obtain ones with the maximum estimation accuracy. The comparison of models was based on the goodness of fit and the prediction performance measures.The fitted models showed that the traffic flow and several variables related to road infrastructure and geometric design significantly influence the intersection crash frequency. Further, the goodness of fit and the prediction performance measures revealed that the NB-P model outperformed other models in most crash severity levels for signalized intersections. For the unsignalized intersections, the GP model was the best performing model. When only the NB models were compared, the functional form NB-P performed better than the traditional NB-1 and, more specifically, the NB-2 models. In conclusion, our findings suggest a potential improvement in the estimation accuracy of the SPFs for urban intersections by applying the NB-P and GP models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.