Abstract

This paper presents an appropriate method for estimating road friction coefficient. The method uses measured values from wheel angular velocity and yaw rate sensors of a vehicle so that it could estimate the road friction coefficient. The estimation process is done in three steps: first, vehicle lateral and longitudinal velocities along with yaw rate value are identified by an extended Kalman filter observer when lateral acceleration and yaw rate values are subjected to process and measurement noises, respectively. Then, lateral and longitudinal tire forces are estimated using a recursive least square algorithm so that to be used in a neural network designed based on well-known Magic Formula tire model. In the final stage, using a multilayer perceptron neural network and estimated values of the previous stages, the road friction coefficient is estimated. Finally, the set of estimators is evaluated using 14 degrees of freedom full vehicle dynamic model and the obtained results are compared with their actual values of vehicle model for two different maneuvers of vehicle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.