Abstract

Purpose is to develop a procedure for estimating risks that occur as the result of a signal passed at danger (SPAD) by a shunting or train locomotive, as well as to develop recommendations for reducing risks of train collisions when performing shunting movement at a station. Methods. In Oder to achieve the stated purpose, it is necessary to define the average number of points burst open by shunting locomotives without derailment, as well the average number of derailments of shunting locomotives per year. The availa- bile statistics are used to calculate the average amount of damage from one collision, from a point burst open without subsequent derailment, as well as a point burst open with subsequent derailment. To calculate the average number of damage as the result of a certain injury caused by collision, different types of injuries are considered. Injuries are classified by the level of consequences that are calculated in money terms using a minimum wage. To consider the variability in choosing a route, as well as to obtain the probability of a passenger train collision when passing through a station, the formula of total probability is used. To obtain the probabiity of at least one collision per year, the formula of multiplication of probability is used. To obtain the average number of points burst open and derailments, it is necessary to define the total number of points that are crossed by shunting locomotives at a station per point, the formula of multiplication of probability is used. To define the level of risk caused by the respective unfavorable event, it is necessary to construct risk matrices to define whether there is a necessity in immediate actions to reduce a risk level. Results. We have studied the task of calculation of unfavorable events caused by stop signal violation by a passenger train or a shunting locomotive. It provides the formulas used to calculate the probability of at least one collision of a passenger train at a station per year, the average number of points burst open by a shunting locomotive without subsequent derailment, as well as the average number of derailments per year. It also contains the formulas used to calculate the average damage from unfavorable events. Risk matrices for all unfavorable events have been constructed. The article gives the example of application of the obtained results which is based on hypothetical data, real data and expert analysis. Conclusion. Using the developed procedure we demonstrated its practical functionality. It was obtained that for the set of input data which were analyzed, there should not be any measures taken to reduce risks occurred as the result of points burst open and derailments at the station under consideration. At the same time the collision risk is in the orange area - the area of undesirable risks, and therefore, the measures on risk reduction should be taken. And a quantitative value of the risk occurred as the result of points burst open turns out to be higher than that of the collision risk. The matter is that in case of collision JSC RZD bears additional reputational expenses, doubled by the fact that a derailment occurs at a station with large numbers of people.

Highlights

  • При проезде маневровым составом запрещающего сигнала светофора возможны несколько неблагоприятных событий: его столкновение с пассажирским или грузовым поездами, взрез стрелочного перевода без схода маневрового состава, сход маневрового состава с рельсов

  • В работе [2] проводится расчет вероятности бокового столкновения маневрового состава и пассажирского поезда, когда один из участников движения проехал светофор с запрещающим показанием, на определенном маршруте следования пассажирского поезда, где под маршрутом понимается набор стрелочных переводов, которые пассажирский поезд пересекает при движении через станцию

  • Библиографический список1. ГОСТ Р 54505-2011 «Безопасность функциональная. Управление рисками на железнодорожном транспорте». 2. Игнатов А.Н., Кибзун А.И., Платонов Е.Н. Оценка вероятности столкновения железнодорожных составов на железнодорожных станциях на основе пуассоновской модели // Автоматика и телемеханика, 2016. No11. (принята к публикации). 3. Кибзун А.И., Горяинова Е.Р., Наумов А.В. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами – М.: ФИЗМАТЛИТ, 2014. 4. Статья 1 Федерального закона от 14.12.2015 N 376-ФЗ. 5. Новожилов Е.О. Принципы построения матрицы рисков // Надежность. 2015. No 3(54), с. 73-86

Read more

Summary

Определение среднего ущерба от неблагоприятных событий

Связанный с возможной гибелью людей или причинением вреда здоровью человека. Пусть – количество погибших людей в i-м столкновении, – количество людей, которым причинен тяжкий вред здоровью в i-м столкновении, – количество людей, которым причинен средний вред здоровью в i-м столкновении, Сср – ущерб при причинении среднего вреда здоровью одному человеку, Стя – ущерб при причинении тяжкого вреда здоровью одному человеку, Ссм – ущерб при гибели одного человека. Средний ущерб от возможной гибели людей или причинения вреда здоровью человека при одном столкновении составляет. Аналогично если имеется Мсх протоколов взрезов с последующим сходом, в которых был зафиксирован некоторый ущерб, то средняя величина материального ущерба, вычисленная по всем происшествиям, вычисляется по формуле (11). Где – материальный ущерб от взреза с последующим сходом, зафиксированный в i-м протоколе

Оценивание величины риска
Построение матриц риска
Уровни частоты
Библиографический список
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call