Abstract

Understanding the temporal and spatial variability in crop yield is considered as one of the key steps in agricultural risk assessment. Therefore, a study of an irrigated area in Cihea, West Java, Indonesia, was conducted to assess rice yield per field using SENTINEL-2 imagery and yield observation data in 2018 and 2019. The study area is located in the Citarum River basin. SENTINEL-2 images were used to derive paddy rice’s growth curve and estimate rice growth stages based on the normalized difference vegetation index. Using these results, the regression model formula using Band 4 (665 nm) and the normalized difference water index in the ripening stage was created (R2 = 0.40, RMSE = 1.21 t/ha). The results from this model were used to generate yield maps, which illustrated a distinct spatial variation in rice yield, such as the average rice productivity in the study area was relatively high, however, the difference between years tended to be small in the upper stream area. The results of this study show that this method is effective in this area to monitor rice yield condition and distribution.Understanding the temporal and spatial variability in crop yield is considered as one of the key steps in agricultural risk assessment. Therefore, a study of an irrigated area in Cihea, West Java, Indonesia, was conducted to assess rice yield per field using SENTINEL-2 imagery and yield observation data in 2018 and 2019. The study area is located in the Citarum River basin. SENTINEL-2 images were used to derive paddy rice’s growth curve and estimate rice growth stages based on the normalized difference vegetation index. Using these results, the regression model formula using Band 4 (665 nm) and the normalized difference water index in the ripening stage was created (R2 = 0.40, RMSE = 1.21 t/ha). The results from this model were used to generate yield maps, which illustrated a distinct spatial variation in rice yield, such as the average rice productivity in the study area was relatively high, however, the difference between years tended to be small in the upper stream area. The results of this study show that this method is effective in this area to monitor rice yield condition and distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.