Abstract

The representative elementary volume (REV) of fractured rock masses is a significant index to investigate the rock mass behaviors in the continuum mechanics. In this research, a new indicator to estimate the REV size of fractured rock masses based on the Geological Strength Index (GSI) is proposed. For this purpose, a new method that combines the PFC-based synthetic rock mass (SRM) model with the Hoek-Brown (HB) failure criterion is proposed to investigate the strength and deformation properties of fractured rock masses under biaxial stress conditions. Extensive numerical analyses are carried out to estimate variation of the uniaxial compression strength (UCS), deformation modulus (E) and GSI of the Brunswick mine rock mass with increasing the size of the SRM models up to a REV size. Results show that the GSI-based indicator gives relatively larger REV size compared with the traditional UCS or deformation modulus (E) based indicators. Compared with the traditional indicators, the proposed GSI-based indicator has merits of not only reflecting the geometrical characteristics of rock structures but also containing both geometrical and mechanical properties of discontinuities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.