Abstract

Wearable inertial sensors offer the possibility to monitor sleeping position and respiration rate during sleep, enabling a comfortable and low-cost method to remotely monitor patients. Novel methods to estimate respiration rate and position during sleep using accelerometer data are presented, with algorithm performance examined for two sensor locations, and accelerometer-derived respiration rate compared across sleeping positions. Eleven participants (9 male; aged: 47.82±14.14 years; BMI 30.9±5.27 kg/m2; AHI 5.77±4.18) undergoing a scheduled clinical polysomnography (PSG) wore a tri-axial accelerometer on their chest and upper abdomen. PSG cannula flow and position data were used as benchmark data for respiration rate (breaths per minute, bpm) and position. Sleeping position was classified using logistic regression, with features derived from filtered acceleration and orientation. Accelerometer-derived respiration rate was estimated for 30 s epochs using an adaptive peak detection algorithm which combined filtered acceleration and orientation data to identify individual breaths. Sensor-derived and PSG respiration rates were then compared. Mean absolute error (MAE) in respiration rate did not vary between sensor locations (abdomen: 1.67±0.37 bpm; chest: 1.89±0.53 bpm; p=0.52), while reduced MAE was observed when participants lay on their side (1.58±0.54 bpm) compared to supine (2.43±0.95 bpm), p<0.01. MAE was less than 2 bpm for 83.6% of all 30 s windows across all subjects. The position classifier distinguished supine and left/right with a ROC AUC of 0.87, and between left and right with a ROC AUC of 0.94. The proposed methods may enable a low-cost solution for in-home, long term sleeping posture and respiration monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.