Abstract
This paper presents a review on the application of neural networks for the estimation, forecasting, monitoring, and classification of exogenous environmental variables that affect the performance, salubrity, and security of cities, buildings, and infrastructures. The forecast of these variables allows to explore renewable energy and water resources, to prevent potentially hazardous construction locations, and to find the healthiest places, thus promoting a more sustainable future. Five research themes are covered—solar, atmospheric, hydrologic, geologic, and climate change. The solar section comprises solar radiation, direct and diffuse radiation, infrared and ultraviolet radiation, clearness index, and sky luminance and luminous efficacy. The atmospheric section reviews wind, temperature, humidity, cloud classification, and storm prediction. The hydrologic section focuses on precipitation, rainfall-runoff, hail, snow, drought, flood, tides, water levels, and other variables. The geologic section covers works on landslides, earthquakes, liquefaction, erosion, soil classification, soil mechanics, and other properties. Finally, climate change forecasting and downscaling of climate models are reviewed. This work demonstrates the wide range of applications of these methods in different research fields. Some research gaps and interdisciplinary research opportunities are identified for future development of comprehensive forecast and evaluation approaches regarding the estimation of renewable energy and built environment-related variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.