Abstract

<span>The bulk noise has been provoking a contributed data due to a communication network with a tremendously low signal to noise ratio. An appreciated method for revising massive noise of individuals through information theory is widely discussed. One of the practical applications of this approach for bulk noise estimation is analyzed using intelligent automation and machine learning tools, dealing the case of bulk noise existence or nonexistence. A regression-based model is employed for the investigation and experiment. Estimation for the practical case with bulk noisy datasets is proposed. The proposed method applies slice-and-dice technique to partition a body of datasets down into slighter portions so that it can be carried out. The average error, correlation, absolute error and mean square error are computed to validate the estimation. Results from massive online analysis will be verified with data collected in the following period. In many cases, the prediction with bulk noisy data through MOA simulation reveals Random Imputation minimizes the average error.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.