Abstract
Many researchers used auxiliary information together with survey variable to improve the efficiency of population parameters like mean, variance, total and proportion. Ratio and regression estimation are the most commonly used methods that utilized auxiliary information in different ways to get the maximum benefits in the form of high precision of the estimators. Thompson first introduced the concept of Adaptive cluster sampling, which is an appropriate technique for collecting the samples from rare and clustered populations. In this article, a generalized exponential type estimator is proposed and its properties have been studied for the estimation of rare and highly clustered population variance using single auxiliary information. A numerical study is carried out on a real and artificial population to judge the performance of the proposed estimator over the competing estimators. It is shown that the proposed generalized exponential type estimator is more efficient than the adaptive and non adaptive estimators under conventional sampling design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.