Abstract

The distortion product otoacoustic emission (DPOAE) input/output (I/O) function may provide a potential tool for evaluating cochlear compression. Hearing loss causes an increase in the level of the sound that is just audible for the person, which affects the cochlea compression and thus the dynamic range of hearing. Although the slope of the I/O function is highly variable when the total DPOAE is used, separating the nonlinear‐generator component from the reflection component reduces this variability. We separated the two components using least squares fit (LSF) analysis of logarithmic sweeping tones, and confirmed that the separated generator component provides more consistent I/O functions than the total DPOAE. In this paper we estimated the slope of the I/O functions of the generator components at different sound levels using LSF analysis. An artificial neural network (ANN) was used to estimate psychophysical thresholds using the estimated slopes of the I/O functions. DPOAE I/O functions determined in this way may help to estimate hearing thresholds and cochlear health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.