Abstract

Evapotranspiration estimations are not common in developing countries though most of them have water scarcities for agricultural purposes. Therefore, it is essential to estimate the rates of evapotranspiration based on the available climatic parameters. Proper estimations of evapotranspiration are unavailable to Sri Lanka, even though the country has a significant agricultural contribution to its economy. Therefore, the Shuttleworth–Wallace (S-W) model, a process-based two-source potential evapotranspiration (PET) model, is implemented to simulate the spatiotemporal distribution of PET, evaporation from soil (ETs), and transpiration from vegetation canopy (ETc) across the total landmass of Sri Lanka. The country was divided into a grid with 6 k m × 6 k m cells. The meteorological data, including rainfall, temperature, relative humidity, wind speed, net solar radiation, and pan evaporation, for 14 meteorological stations were used in this analysis. They were interpolated using Inverse Distance Weighting (IDW), Universal kriging, and Thiessen polygon methods as appropriate so that the generated thematic layers were fairly closer to reality. Normalized Difference Vegetation Index (NDVI) and soil moisture data were retrieved from publicly available online domains, while the threshold values of vegetation parameters were taken from the literature. Notwithstanding many approximations and uncertainties associated with the input data, the implemented model displayed an adequate ability to capture the spatiotemporal distribution of PET and its components. A comparison between predicted PET and recorded pan evaporations resulted in a root mean square error (RMSE) of 0.75 mm/day. The model showed high sensitivity to Leaf Area Index (LAI). The model revealed that both spatial and temporal distribution of PET is highly correlated with the incoming solar radiation fluxes and affected by the rainfall seasons and cultivation patterns. The model predicted PET values accounted for 80–90% and 40–60% loss of annual mean rainfall, respectively, in the drier and wetter parts of the country. The model predicted a 0.65 ratio of annual transpiration to annual evapotranspiration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call