Abstract

Consider a random vector with finite second moments. If its precision matrix is an M-matrix, then all partial correlations are non-negative. If that random vector is additionally Gaussian, the corresponding Markov random field (GMRF) is called attractive.We study estimation of M-matrices taking the role of inverse second moment or precision matrices using sign-constrained log-determinant divergence minimization. We also treat the high-dimensional case with the number of variables exceeding the sample size. The additional sign-constraints turn out to greatly simplify the estimation problem: we provide evidence that explicit regularization is no longer required. To solve the resulting convex optimization problem, we propose an algorithm based on block coordinate descent, in which each sub-problem can be recast as non-negative least squares problem.Illustrations on both simulated and real world data are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.