Abstract

A one-dimensional inverse problem arising in infrared thermography for the detection and characterization of buried objects is introduced. Mathematically, the problem is to reconstruct a piecewise constant coefficient of a scalar heat equation in a finite rod from measurements taken at one of its extremities. The problem is posed in the well known least-squares setting and solved by a quasi-Newton method. The contributions of this article include: (i) the parameterization of a piecewise constant function by a small number of unknown parameters which represent its constant values and locations of discontinuities; (ii) the application of the adjoint field technique in the calculation of the gradient of a discretized objective function and (iii) the application of the considered inverse problem in the detection and characterization of buried objects. Numerical results illustrate the good performance of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.