Abstract
The Wyoming Technology Transfer Center is in the process of developing a pavement management system (PMS) for county paved roads in Wyoming. This PMS uses the present serviceability index (PSI) as a main pavement performance parameter. This PMS depends on pavement condition index, international roughness index, and pavement rutting as explanatory variables to estimate PSI. This study researched new explanatory variables measured by using smartphones’ sensors to estimate PSI. It was found that the variance of the signals (time series acceleration data) acquired by smartphones’ accelerometers could work as a very good explanatory variable to estimate PSI. Two models were developed with high significance ( R2 higher than .9) to predict PSI using the variance of smartphone signals. The initial validation results suggested that using these models could predict, with high certainty, the actual PSI values. The difference between the predicted and the actual PSI values was not statistically different. The study was performed on 20 roadway segments extracted from the Wyoming county roads’ PMS database. In addition, the selected segments had various lengths and geometric features reflecting various roadway segments under any PMS. The proposed methodology is intended to lower the cost of measuring county roads’ pavement conditions by estimating PSI directly without the reliance on the direct measurement of pavement condition parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.