Abstract
Inverse analysis is an efficient method to estimate parameters that characterizes a given system. It offers lot of flexibility at the designer’s hand in selecting the most suitable combination of parameters satisfying a given set of objective functions. In this study, inverse analysis of a solid oxide fuel cell (SOFC)–gas turbine (GT)–steam turbine (ST) combined cycle (CC) power system is performed. The system’s net power, efficiencies (energy and exergy) and the total irreversibility at compressor pressure ratio (CPR) 6 and 14 are considered as objective functions for the inverse problem. A differential evolution (DE) based inverse algorithm is used for simultaneously estimating six operating parameters of the plant. It was seen that the inverse technique was very effective in estimating the operating parameters of a hybrid SOFC–GT–ST plant correctly within the prescribed lower and upper bound of the parameters. Multiple combinations of parameters are obtained from the study and all these combinations of parameters satisfy the given single objective function/set of objective functions. Any objective function value be set and then operating parameters be determined accordingly using the inverse method. The results offer plenty of scope for selection of suitable operating parameters for the plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.