Abstract

Introduction: The present study investigated the relatively high concentrations of natural radionuclides in raw material that used in ceramic manufacturing, and estimated the occupational exposure due to these activity concentrations. Material and Methods: A high-purity Germanium detector was used to determine naturally occurring radionuclides in raw materials that used in ceramic manufacturing. Activity concentrations of these materials lead to potential radiological hazards due to gamma and alpha radiation. These hazards were evaluated in the present study. Results: Maximum activity concentrations was5844, 1065 and 41 Bq/kg for 226Ra, 232Th and 235U in powdered quartz; however, maximum activity concentration for 40K was 1868 Bq/kg in colors. These activities were observed to be exceeding the exemption limit. Pancreasreceived the lowest dose (i.e., 0.02 mSv/y), while skin received the highest dose (i.e., 0.044mSv/y). Internal hazard index (Hin) was reported as 53.74, which exceed the recommended value (Hin≤1). Alpha index was 42.4 which led to over exposure. Representative level index and excess lifetime cancer risk were 0.00062 and 0.641 respectively. The total annual external dose was 2.62 m Gy/y which led to 1.83 mSv/y effective dose. Radiological hazard due to radon inhalation was 1.53E-06 mSv/y. Conclusion: Due to the high activity concentrations of raw materials (especially zirconium compounds) and consequently the associated high dose, specific regulations must be applied in the ceramic industry in Egypt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call