Abstract

AbstractRemote sensing of nitrogen (N) concentration and in vitro dry matter digestibility (IVDMD) in herbage can help livestock managers make timely decisions for adjusting stocking rate and managing pastures during the grazing season. Traditional laboratory analyses of N and IVDMD are time‐consuming and costly. Non‐destructive measurements of canopy hyperspectral reflectance of pasture may provide a rapid and inexpensive means of estimating these measures of nutritive value. Using a portable spectroradiometer, canopy reflectance was measured in eight warm‐season grass pastures in the USA in June and July in 2002 and 2003 to develop and validate algorithms for estimating N concentration and IVDMD of herbage. Nitrogen concentration of herbage was linearly correlated (r = 0·82; P < 0·001) with a ratio of reflectance in the 705‐ and 1685‐nm wavebands (R705/R1685) and IVDMD was correlated with R705/R535 (r = 0·74; P < 0·001). Compared with simple linear regressions of N concentration and IVDMD in herbage with two‐waveband reflectance ratios, multiple regression, using maximum r2 improvement, band‐depth analysis with step‐wise regression, and partial least‐squares regression enhanced the correlation between N concentration and IVDMD of herbage and canopy reflectance values (0·81 ≤ |r| ≤ 0·90; P < 0·001). Validation of the prediction equations indicated that multiple regression only slightly improved accuracy of a model for predicting N concentration and IVDMD of herbage compared with simple linear regression of reflectance ratios. Results suggest that the N concentration and IVDMD of herbage of warm‐season grass pastures can be rapidly and non‐destructively estimated during the grazing season using canopy reflectance in a few narrow wavebands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.