Abstract
Ferrites are ceramic oxide materials consisting of mainly iron oxide and they have become massively important materials commercially and technologically, having a multitude of uses and applications. The protection against neutron–gamma mixed radiation is crucial in several nuclear applications. From this standpoint, mass attenuation coefficient, radiation protection efficiency and transmission factor of some ferrites namely barium, strontium, manganese, copper and cadmium ferrite has been computed using Geant4 and FLUKA simulations. Based on the simulated mass attenuation coefficient, other significant parameters such as linear attenuation coefficient, effective atomic and electron number, conductivity, half value layer, and mean free path were calculated for the selected ferrite materials. The validation of Monte Carlo geometry has been provided by comparing the mass attenuation coefficient results with standard WinXCom data. Gamma ray exposure buildup factors were computed using geometric progression fitting formula for the chosen ferrites in the energy range 0.015–15 MeV at penetration depths up to 40 mfp. The findings of the present work reveal that among the studied ferrites, barium ferrite and copper ferrite possess superior gamma ray and fast neutron attenuation capability, respectively. The present work provides a comprehensive investigation of the selected iron oxides in the field of neutron and gamma ray.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.