Abstract

The Tibetan Plateau (TP) is one of the most important areas for the study of the carbon budgets of terrestrial ecosystems. However, the estimation of the net ecosystem productivity (NEP) remains uncertain in this region due to its complex topographic properties and climatic conditions. Using CO2-eddy-covariance-flux data from 1982 to 2018 at 18 sites distributed around the TP grassland, we analyzed the spatial–temporal patterns of the grassland NEP and its driving factors from 1982 to 2018 using a random forest (RF) model. Our results showed that the RF model captured the size of the carbon sink (R2 = 0.65, p < 0.05) between the observed and simulated values for the validation samples. During the observation period, the grassland acted as a carbon sink of 26.2 Tg C yr−1 and increased significantly, by 0.4 g C m−2 yr−1. On a regional scale, the annual NEP gradually increased from the northwest to the southeast, and a similar pattern was also observed in the long-term trends. Furthermore, the moisture conditions, such as the specific humidity and precipitation, were proven to be the main driving factors of the carbon flux in the southeastern areas, while the temperature predominantly controlled the carbon flux in the northwest. Our results emphasize the net carbon sink of the TP and provide a reliable way to upscale NEP from sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.