Abstract
Municipal solid waste (MSW) amount has direct influence on MSW management, policy-decision making, and MSW treatment methods. Machine learning has great potential for prediction, but few studies apply the approaches of deep learning to forecast the quantity of MSW. Therefore, the aim of this study is to evaluate the feasibility and practicability of employing the methods of supervised learning, including Attention, one-dimension Convolutional Neural Network (1D-CNN) and Long Short-Term Memory (LSTM) to predict the MSW Amount in Shanghai. Integrated 1D-CNN and LSTM with Attention model, the new structure model (1D-CNN-LSTM-Attention, 1D-CLA), is designed to forecast MSW amount. In addition, the influence of socioeconomic factors on MSW amount, the structure and layers distribution of Attention, 1D-CNN, LSTM and 1D-CLA are also discussed. The results indicate that the correlation coefficients of Attention, one-dimension CNN, LSTM, and proposed 1D-CLA model to predict the MSW in Shanghai are 78%, 86.6%, 90%, and 95.3%, respectively, suggesting the feasible and practicable. The values of 24, 0.01, 50 and 25 for the number of neurons, dropout, the value of epoch number and Batch size best fit 1D-CLA to predict the amount of MSW in Shanghai. Furthermore, the performance of 1D-CLA is better than any single model or two model's combination (R2 is 95.3%) and the mechanism of 1D-CLA is contributed by three former models following the order: LSTM>CNN>Attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.