Abstract

Summary Three new entropy estimators of multivariate distributions are introduced. The two cases considered here concern when the distribution is supported by a unit sphere and by a unit cube. In the former case, the consistency and the upper bound of the absolute error for the proposed entropy estimator are established. In the latter one, under the assumption that only the moments of the underlying distribution are available, a non-traditional estimator of the entropy is suggested. We also study the practical performances of the constructed estimators through simulation studies and compare the estimators based on the moment-recovered approaches with their counterparts derived by using the histogram and kth nearest neighbour constructions. In addition, one worked example is briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.