Abstract

In this article, the reliability inference for a multicomponent stress-strength (MSS) model, when both stress and strength random variables follow inverse Topp-Leone distributions, was studied. The maximum likelihood and uniformly minimum variance unbiased estimates for the reliability of MSS model were obtained explicitly. The exact Bayes estimate of MSS reliability was derived the under squared error loss function. Also, the Bayes estimate was obtained using the Monte Carlo Markov Chain method for comparison with the aforementioned exact estimate. The asymptotic confidence interval was determined under the expected Fisher information matrix. Furthermore, the highest probability density credible interval was established through using Gibbs sampling method. Monte Carlo simulations were implemented to compare the different proposed methods. Finally, a real life example was presented in support of the suggested procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.