Abstract

Muscle fiber conduction velocity (CV) can be estimated by the application of a pair of spatial filters to surface electromagnetic (EMG) signals and compensation of the spatial filter transfer function with equivalent temporal filters. This method integrates the selection of the spatial filters for signal detection to the estimation of CV. Using this approach, in this paper, we propose a novel technique for signal-based selection of the spatial filter pair that minimizes the effect of nonpropagating signal components (end-of-fiber effects) on CV estimates (optimal filters). The technique is applicable to signals with one propagating and one nonpropagating component, such as single motor unit action potentials. It is shown that the determination of the optimal filters also allows the identification of the propagating and nonpropagating signal components. The new method was applied to simulated and experimental EMG signals. Simulated signals were generated by a cylindrical, layered volume conductor model. Experimental signals were recorded from the abductor pollicis brevis with a linear array of 16 electrodes. In the simulations, the proposed approach provided CV estimates with lower bias due to nonpropagating signal components than previously proposed methods based on the entire signal waveform. In the experimental signals, the technique separated propagating and nonpropagating signal components with an average reconstruction error of 2.9 +/- 0.9% of the signal energy. The technique may find application in single motor unit studies for decreasing the variability and bias of CV estimates due to the presence and different weights of the nonpropagating components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.