Abstract

ABSTRACTIn this paper, we estimate prediction errors owing to approximations in calculation models (modeling approximation error) using the data assimilation method. Correlations between the modeling approximation error and neutronics parameters obtained through calculations are evaluated in test configurations and then the evaluated correlations are used to predict the modeling approximation errors in design configuration. Formulae to estimate the modeling approximation error using the correlations are derived based on the minimum variance approach and the physical interpretation of the formulae is discussed through simple cases. The proposed method is applied in 2 × 2 and 3 × 3 fuel assembly geometries using specifications of the KAIST benchmark problem. The correlation between the modeling approximation error and parameters (neutron leakage in each fuel assembly) is estimated in 2 × 2 fuel assemblies and then the modeling approximation error in 3 × 3 fuel assemblies is predicted using the correlation. The calculation results not only indicate feasibility of the present method, but also suggest a need for further investigation on the assumptions used in the present study, i.e. applicability and robustness of the correlation among different geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call