Abstract
The importance of milkability as a trait is growing because of the need to efficiently use labor and machinery; therefore, it is crucial to update the statistical model for the trait to improve the accuracy of the estimated breeding values, and thus provide a more accurate tool for decision-making at the farm level. In the Italian Holstein Friesian cattle population, milkability is recorded twice a year by the milk recording system as a binary trait (slow, coded as 2, or not slow, coded as 1). Data consisted of 7,862,371 records from 2,945,249 cows collected between 2004 and 2021. A single-trait threshold animal model with repeated measures was used, with parity, days in milk class, calving season, and regression of production (fat + protein grams) within days in milk class as fixed effects and herd-year-season of recording, permanent environment, and animal as random effects. The results for heritability and repeatability were 0.275 and 0.5, estimated with the Gibbs sampler THRGIBBS1F90. Genomic validation, carried out using genotyped proven bulls born before 2009 as the training set, gave a result of 0.386 for reliability. The genetic correlations of this trait confirmed that both extremes of the estimated breeding value must be treated cautiously, because correlations with important traits such as mastitis resistance, body condition score, and teat length are unfavorable.
Highlights
The result of the genomic validation for reliability was 0.386, which is an improvement compared with the previous model
The genetic correlations of this trait confirmed that both extremes of the estimated breeding value must be treated cautiously
The importance of milkability as a trait is growing because of the need to efficiently use labor and machinery; it is crucial to update the statistical model for the trait to improve the accuracy of the estimated breeding values, and provide a more accurate tool for decision-making at the farm level
Summary
A single-trait threshold animal model with repeated measures was used, with parity, days in milk class, calving season, and regression of production (fat + protein grams) within days in milk class as fixed effects and herd-year-season of recording, permanent environment, and animal as random effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.