Abstract
This paper presents an inverse reliability analysis to determine the unknown design parameters such that prescribed reliability indices are attained in the presence of mixed uncertain variables. The proposed computational procedure involves the failure probability estimation using High Dimensional Model Representation, transformation technique to obtain the contribution of the fuzzy variables to the convolution integral, convolution using fast Fourier transform, and update of reliability index and most probable point. This is aversatile method that can solve even highly nonlinear problems or the problems with multiple parameters. The methodology developed is applicable for inverse reliability analysis involving any number of fuzzy variables and random variables with any kind of distribution. The accuracy and efficiency of the proposed method is demonstrated through three examples involving explicit/implicit performance functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.