Abstract

First-principles calculations of multi-component alloys have been studied in detail. Herein, the first-principles calculations of Mg-5Zn-0.5Al-xSn alloys were performed by using the virtual crystal approximation (VCA) method. By calculating the lattice constants and elastic constants of the Mg-5Zn-0.5Al-xSn doping models, it was found that the mechanical properties and micro-hardness were related with the content of Sn. With the increase of Sn content, and the best ductility and the smallest micro-hardness were achieved at Sn = 2 wt.%. To verify the calculation results, the Mg-5Zn-0.5Al-xSn alloys were prepared and micro-hardness and tensile tests were conducted. The experiments demonstrate that the trends in mechanical properties obtained from the experiments are in agreement with the VCA computational results. These findings indicate that the VCA method has guiding significance in industries for rapid screening of high-performance Mg alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.