Abstract
An approach to assess the mechanical properties of a viscoelastic medium using laser-induced microbubbles is presented. To measure mechanical properties of the medium, dynamics of a laser-induced cavitation microbubble in viscoelastic medium under acoustic radiation force was investigated. An objective lens with a 1.13 numerical aperture and an 8.0 mm working distance was designed to focus a 532 nm wavelength nanosecond pulsed laser beam and to create a microbubble at the desired location. A 3.5 MHz ultrasound transducer was used to generate acoustic radiation force to excite a laser-induced microbubble. Motion of the microbubble was tracked using a 25 MHz imaging transducer. Agreement between a theoretical model of bubble motion in a viscoelastic medium and experimental measurements was demonstrated. Young's modulii reconstructed using the laser-induced microbubble approach were compared with those measured using a direct uniaxial method over the range from 0.8 to 13 kPa. The results indicate good agreement between methods. Thus, the proposed approach can be used to assess the mechanical properties of a viscoelastic medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.