Abstract
Sampling is an important part of any measurement process and is therefore recognized as an important contributor to the measurement uncertainty. A reliable estimation of the uncertainty arising from sampling of fuels leads to a better control of risks associated with decisions concerning whether product specifications are met or not. The present work describes and compares the results of three empirical statistical methodologies (classical ANOVA, robust ANOVA and range statistics) using data from a balanced experimental design, which includes duplicate samples analyzed in duplicate from 104 sampling targets (petroleum retail stations). These methodologies are used for the estimation of the uncertainty arising from the manual sampling of fuel (automotive diesel) and the subsequent sulfur mass content determination. The results of the three methodologies statistically differ, with the expanded uncertainty of sampling being in the range of 0.34–0.40mgkg−1, while the relative expanded uncertainty lying in the range of 4.8–5.1%, depending on the methodology used. The estimation of robust ANOVA (sampling expanded uncertainty of 0.34mgkg−1 or 4.8% in relative terms) is considered more reliable, because of the presence of outliers within the 104 datasets used for the calculations. Robust ANOVA, in contrast to classical ANOVA and range statistics, accommodates outlying values, lessening their effects on the produced estimates. The results of this work also show that, in the case of manual sampling of fuels, the main contributor to the whole measurement uncertainty is the analytical measurement uncertainty, with the sampling uncertainty accounting only for the 29% of the total measurement uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.