Abstract

Following inhalation of an aerosol of relatively insoluble particles, it is usually found that the fractional dissolution rate of material retained in the lungs decreases with time, and the amount remaining undissolved can be represented simply by a decreasing exponential function with two or more components. A few exceptions are known, in which the dissolution rate increases with time. The most important in the context of radiological protection is probably that of 238Pu dioxide. Several published comprehensive data sets, from animal studies and accidental human exposures, have been analysed using the Human Respiratory Tract Model (HRTM) of the International Commission on Radiological Protection. The HRTM contains a simplified representation of particle dissolution in the respiratory tract, suitable for routine radiological protection purposes. Still, it was found to have sufficient flexibility to represent the measurement data in most of these cases. Although the 238Pu dioxide showed a wide range of behaviour in the different studies, there was good agreement between the absorption behaviour modelled for two studies involving ‘ceramic’ 238Pu dioxide as used in spacecraft radioisotope thermoelectric generators: a long-term experimental study in dogs and an accidental exposure involving a group of workers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.