Abstract

The densities measured by the CACTUS microaccelerometer at altitudes from 270 to 600 km are used to analyze the effect of tidal perturbations in the Earth’s thermosphere caused by the gravitational attraction of the Moon and the Sun. These tidal perturbations are considered a priori small and are not taken into account in modern atmospheric density models. The residuals between the densities measured by the CACTUS microaccelerometer and calculated by models are analyzed, and the density variations correlating with variations of the zenith angles from the Moon to the center of the Earth to the satellite and from the Sun to the center of the Earth to the satellite are found at altitudes from 270 to 600 km. The amplitude of the perturbations revealed in the study grows with height. The phase of the tidal perturbations also varies with height. The amplitude of the density variations is about 30% at 270–320 km and increases to 80% at 520–570 km. The results agree with a priori theoretical estimates obtained for tidal motion of gaseous matter with a variable density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.