Abstract

Forecasting the hydrodynamic properties of a ship is crucial for assessing its maneuvering capabilities. This study presents the results of static drift and circular motion simulations conducted on a 37000 tdw chemical tanker. The calculations were carried out using the ISIS-CFD solver, accessible through the FineTM/Marine academic license provided by NUMECA. The flow solution was obtained by numerically solving the Reynolds-Averaged Navier Stokes equations, employing the k-ω Shear Stress Transport (SST) model to represent turbulence. The simulation results were used to determine the linear hydrodynamic derivatives, which were then compared with hydrodynamic derivatives estimated with empirical formulas proposed by Clarke et. al. [1] and Tribon Initial Design module in the absence of experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.