Abstract

Thanks to their electrochemical structure, batteries are the elements that can store electrical energy and spend on a load when the electrical energy they store is needed. Today, with the widespread use of electrically powered mobile devices, rechargeable batteries have become widespread and battery technologies have developed. With the idea that the latest technology systems and electric vehicles will become widespread in the future, the studies on batteries are increasing day by day. In this study, charge state estimation of Li-ion battery cell used to provide power in many applications was realized by using adaptive neural fuzzy inference system (ANFIS). A Li-ion battery was discharged using variable electrical loads with a battery discharge circuit modeled on MATLAB Simulink and current, voltage, temperature and current power parameters of the battery were selected as input variables. Battery parameters and charge status data obtained from discharge tests using different electrical loads on MATLAB Simulink were used as training and test parameters of neural network. Using the MATLAB ANFIS toolbox, the system was trained with 80% of the battery parameters obtained in the battery discharge experiments and with 20% as testing data, the success performance was interpreted by applying the adaptive neural fuzzy inference system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.