Abstract
Summary With the advent of deep-submicron technologies, leakage power dissipation is a major concern for scaling down portable devices that have burst-mode type integrated circuits. In this paper leakage reduction technique HTLCT (High Threshold Leakage Control Transistor) is discussed. Using high threshold transistors at the place of low threshold leakage control transistors, result in more leakage power reduction as compared to LCT (leakage control transistor) technique but at the scarifies of area and delay. Further, analysis of effect of parametric variation on leakage current and propagation delay in CMOS circuits is performed. It is found that the leakage power dissipation increases with increasing temperature, supply voltage and aspect ratio. However, opposite pattern is noticed for the propagation delay. Leakage power dissipation for LCT NAND gate increases up to 14.32%, 6.43% and 36.21% and delay decreases by 22.5%, 42% and 9% for variation of temperature, supply voltage and aspect ratio. Maximum peak of equivalent output noise is obtained as 127.531 nV/Sqrt(Hz) at 400 mHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.