Abstract

Leaf area index (LAI) is a key factor that determines a forest ecosystem’s net primary production and energy exchange between the atmosphere and land surfaces. LAI can be measured in many ways, but there has been little research to compare LAI estimated by different methods. In this study, we compared the LAI results from two different approaches, i.e., the dimidiate pixel model (DPM) and an empirical statistic model (ESM) using ZY-3 high-accuracy satellite images validated by field data. We explored the relationship of LAI of Larix principis-rupprechtii Mayr plantations with topographic conditions. The results show that DPM improves the simulation of LAI (r = 0.86, RMSE = 0.57) compared with ESM (r = 0.62, RMSE = 0.79). We further concluded that elevation and slope significantly affect the distribution of LAI. The maximum peak of LAI appeared at an aspect of east and southeast at an elevation of 1700–2000 m. Our results suggest that ZY-3 can satisfy the needs of quantitative monitoring of leaf area indices in small-scale catchment areas. DPM provides a simple and accurate method to obtain forest vegetation parameters in the case of non-ground measurement points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.