Abstract

Zirconia nanoparticles were synthesized by a solution combustion technique. Zirconia nanoparticles were grown inside alumina templates to control the crystal size. The alumina templates were characterized by pores of sizes of approximately 6–8 nm. X-ray diffraction line profile analysis using Williamson–Hall method and Warren and Averbach revealed that the alumina templates were characterized by negligible defect-related effect of lattice distortion. Rietveld structure refinement did not reveal any gross difference with the literature reported values for cell parameters ‘a’ and ‘c’ and fractional atomic coordinates x and z for Al and O atoms indicating no large-scale bond deformation. The template X-ray reflections in the nanocomposites are skewed in nature which indicates some distortion of the templates might have taken place. The distortion is, however, plastic in nature which is evident from the higher level of lattice distortion viz. 0.2% of lattice microstrain.

Highlights

  • Stabilized zirconia (­ZrO2) ceramics finds application in diverse fields

  • The fundamental issues concerning the atomistic origin of phase stability with a special reference to size stabilization and origin of lattice microstrains of t- and c-ZrO2 polymorphs are still unresolved especially in undoped zirconia ceramics

  • It is clear that combustion synthesis is capable of producing templates for further synthesis of zirconia nanoparticles inside the templates and control of crystal size can be achieved

Read more

Summary

Introduction

Stabilized zirconia (­ZrO2) ceramics finds application in diverse fields. The fully stabilized (cubic) zirconia (FSZ) is used for heating elements, oxygen sensors and fuel cell applications. Among the currently used methods, X-ray diffraction line profile analysis (XRDLPA), in particular, describes the microstructure in terms of parameters such as coherent domain sizes or crystallite sizes, lattice microstrains, stacking fault probabilities, etc.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.