Abstract
In laser damage experiments, damage initiation and growth are typically monitored by imaging the surface of the tested fused silica sample, ignoring their bulk morphology. The depth of a damage site in fused silica optics is considered to be proportional to its equivalent diameter. However, some damage sites experience phases with no diameter changes but growth in the bulk independently from their surface. A proportionality relationship with the damage diameter does not accurately describe the growth of such sites. In the following, an accurate estimator for damage depth is proposed, which is based on the hypothesis that the light intensity scattered by a damage site is proportional to its volume. Such an estimator, using the pixel intensity, describes the change of damage depth through successive laser irradiations, including phases in which depth and diameter variations are uncorrelated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.