Abstract

The role of land surface temperature (LST) is of the utmost importance in multiple academic disciplines, such as climatology, hydrology, ecology, and meteorology. To date, many methods have been proposed to estimate LST from satellite thermal infrared data. The single-channel (SC) algorithm can provide an accurate result in retrieving LST based on prior knowledge of known land surface emissivity (LSE). The SC algorithm is extensively employed for retrieving LST from Landsat series data due to its simplicity and its reliance on just one thermal infrared channel. The Thermal Infrared Sensor (IRS) on the Chinese ZY1-02E satellite is a pivotal instrument employed for gathering thermal infrared (TIR) data of land surfaces. The objective of this research is to evaluate the feasibility of a single-channel approach based on water vapor scaling (WVS) for deriving LST from ZY1-02E IRS data because of its wide spectrum range, i.e., 7~12 μm, which is affected strongly by both atmospheric water vapor and ozone. Three study areas, namely the Baotou, Heihe River Basin, and Yantai Sea sites, were selected as validation sites to evaluate the LST inversion accuracy. This evaluation was also conducted via cross-comparison between the retrieved LST and MODIS LST products. The results revealed that the WVS-based method exhibited an average bias of 0.63 K and an RMSE of 1.62 K compared to the in situ LSTs. The WVS-based method demonstrated reasonable accuracy through cross-validation with the MODIS LST product, with an average bias of 0.77 K and an RMSE of 2.0 K. These findings indicate that the WVS-based method is effective in estimating LST from ZY1-02E IRS data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.