Abstract

AbstractA multiphase computational fluid dynamics (CFD) simulation methodology is developed and proposed for the estimation of the spatial distribution of kLa values in a bench‐scale reactor equipped with a self‐inducing impeller. The importance of estimating an apparent drag coefficient, which considers the effect of turbulence on the gas bubble rising velocity, is also tackled by applying different correlations available in literature, namely, Brucato, modified Brucato, and Pinelli correlations. The spatial distribution of kLa values in the agitated vessel is found from the CFD results using Danckwert's surface renewal model. An analysis of the gas volume fraction distribution obtained from the simulations is performed in order to choose the most suitable drag model. The modified Brucato correction correlation for the drag force exhibits the best agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.